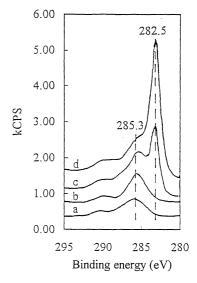
Chemistry Letters 1997 515

Studies on the Reaction Mechanism of CH₄/CO₂ Reforming over Co/\(\gamma\)-Al₂O₃ Catalyst

Yong Lu, Changchun Yu, Jinzhen Xue, Yu Liu,* and Shikong Shen
State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics,
Chinese Academy of Sciences, Lanzhou 730000, China


(Received January 27, 1997; CL-970065)

XPS/AES and pulse reaction characterizations were combined to study the reaction mechanism of CH_4/CO_2 reforming to syngas over Co/γ - Al_2O_3 . Surface carbide carbons formed from CH_4 dissociation were active C species for CO generation. Metallic CO species played an important role in dissociating CH_4 to form carbide carbon and H_2 , abstracting an O atom from CO_2 molecule, and transferring O atom to carbide to form CO.

The CH₄/CO₂ reforming converts both CO₂ and CH₄ to useful feed stock (syngas) with H₂/CO ratio of 1, which is suitable for some special chemical processes, e.g., oxo synthesis.¹ Interestingly, this process exhibits certain potential to be used as thermochemical heat-pipe for recovery, storage and transmission of solar and other renewable energy sources.^{2,3} The catalysts employed are mainly Ni and Pt metals.⁴⁻⁹ Recently, we found that Co metal catalyst showed high activity (>92% for CH₄ and CO₂ conversions) and good stability for this reaction at 1023 K. 10 Many investigators have shown the occurrence of dissociative adsorption of CH₄ on Ni and Pt metals, but no further detailed studies were made to identify which of surface carbons is active for CO generation. 4-9 Especially, no any studies were made on the behaviors on Co metal for this reaction. The present work is focused on exploring the interactions of CH4 and CO2 molecule with metallic Co sites, and the reactions of surface intermediate species on Co/γ-Al₂O₃ catalyst.

Two Co/γ-Al₂O₃ catalysts with Co-loadings of 9.0 wt% (24-45 mesh) and 18.0 wt% (<60 mesh) were prepared by impregnation method. The impregnated samples were dried at 343 K and calcined at 673 K in air for 10 h. Pulse reaction was performed in the continuous flow quartz micro-reactor with an on-line Ion-Trap Detector (ITD) for analyzing exit gas. For each pulse reaction experiment, 300 mg of Co/γ-Al₂O₃ was reduced by H₂ at 973 K for 2 h, flushed in a He flow (20 ml/min) at this temperature for 2 h and cooled to 573 K. The pulse volumes of 10%CH₄+He and 10%CO₂+He were 0.3 ml. XPS/AES measurements were performed on VG ESCALAB 210 spectrometer, using Al anode source generated at a power of 300 watts. The 18.0 wt% Co/γ-Al₂O₃ were directly pressed into Φ13mm pellets. The pellets were reduced by H₂ at 973 K for 10 h and subsequently pretreated with CO₂, CH₄, first CH₄ then CO₂, and the mixture of CH₄/CO₂ in a specific quartz reactor (i.d. 20 mm) respectively. The treated samples were transferred into vacuum chamber for XPS/AES measurement under highly pure N₂ preventing. The morphology of coke formation in whiskers was examined by JEM-1200EX/9100EDAX TEM.

CH₄ TPPR (Temperature Programmed Pulse Reaction) on the reduced 9.0 wt% Co/γ -Al₂O₃ showed that C₂ and C₃ hydrocarbons were generated at 573-973 K. With increase of temperature, the amount of C₂ and C₃ hydrocarbons decreased markedly in contrast to the amount of dissociated CH₄. The results reflected that CH₄ showed a great tendency to dehydro-

Figure 1. XPS spectra of $18.0 \text{ wt}\% \text{ Co/}\gamma\text{-Al}_2\text{O}_3$ in C1s region for (a) reduced sample in H₂ at 973 K for 10 h; sample (a) was treated at 973 K with: (b) mixture of CH₄/CO₂(=1) for 10 min, (c) first CH₄ for 5 min then CO₂ for 5 min, and (d) CH₄ for 5 min.

genate completely to form C species at high temperature.

 ${
m CO_2}$ TPPR on the reduced 9.0 wt% ${
m Co/\gamma\text{-}Al_2O_3}$ catalyst showed that the amount of remnant ${
m CO_2}$ decreased at >673 K. Meanwhile, gaseous CO was also detected at >873 K. These revealed that ${
m CO_2}$ dissociation occurred on reduced catalyst surface and CO desorption probably required higher temperature.

XPS/AES measurements were performed on the treated 18.0 wt% Co/γ-Al₂O₃ to acquire more information on intermediate species and their interactions. Binding energies of Co2p_{3/2}, O1s and C1s and assignments were summarized in Table 1.

An intense oxidative cobalt peak at 781.7 eV was observed on H₂-CO₂ treated catalyst surface. This was attributed to the oxidation of metallic cobalt with O atoms formed in dissociation of CO₂, further confirming the CO₂ dissociation on Co sites.

XPS spectra of the treated 18.0 wt% Co/ γ -Al₂O₃ in C1s region were depicted in Figure 1. As may be seen, the C1s peaks at ~282 eV were observed on both H₂-CH₄ and H₂-CH₄-CO₂ treated catalyst surfaces. The C KVV peaks with the negative excursion at 250-280 eV (Kinetic energy) were also observed clearly, the peak shape of which was similar to carbide carbon on Ir. Accordingly, the C1s peak at ~282 eV could be assigned adequately to the carbide in this work. The peak intensity of the carbide on the former was much stronger than that on the latter. The effluence of CO was detected by ITD in the case of H₂-CH₄ pretreated 18.0 wt% Co/ γ -Al₂O₃ followed by CO₂ pulses at 973 K. The results revealed that the reaction of surface carbide with O atoms formed in CO₂ dissociation occurred on the H₂-CH₄-

516 Chemistry Letters 1997

Table 1 Binding energies of Co2nan	11 Ols and Cls on 18.0 wt% Co/	y-Al ₂ O ₃ catalysts treated with various gases ^a
------------------------------------	--------------------------------	--

Peak	Assignment	Treating processes at 973 K						
		Fresh	H_2	H ₂ -CH ₄	H_2 - CO_2	H ₂ -CH ₄ -CO ₂ ^b	H ₂ -(CH ₄ /CO ₂) ^c	
Co2p _{3/2}	Co ⁽⁰⁾	none	779.5	779.6	none	779.5	779.5	
$Co2p_{3/2}$	Co ²⁺	781.8	781.9	781.8	781.7	781.9	781.8	
Ols	O^{2-}	531.9	531.9	531.9	531.8	531.7	531.8	
C1s	Carbonates/CO	289.2	289.6	289.7	289.5	289.6	289.5	
Cls	Adventitious/Whisker carbon	285.3	$285.5(40.0)^{d}$	285.3(96.7)	285.5	286.1(100)	285.3(84.9)	
C1s	Carbide carbon ^e	none	none	282.8	none	282.5	none	

^aBinding energies were calibrated against Al2p=74.7 eV; ^bThe reduced catalyst was treated with CH₄, then with CO₂; ^cThe reduced catalyst was treated with CH₄/CO₂(=1) feed gas; ^dRelative intensity defined as peak area ratio in bracket; ^eGraphite carbon had no contribution to C1s peak at ~282 eV in this work, due to appearance of the C KVV peak of the carbide at 250-280 eV (Kinetic energy).

CO₂ treated catalyst surface. A pronounced difference between H_2 -(CH₄/CO₂) and H_2 -CH₄-CO₂ or H_2 -CH₄ treated surface was that C1s and C KVV peaks of the carbide disappeared on the H_2 -(CH₄/CO₂) treated one. Additionally, no detectable increase in the intensity of the weak Co²⁺ peak at ~782 eV was detected on both H_2 -CH₄-CO₂ and H_2 -(CH₄/CO₂) treated surfaces, compared with that of unreducible CoAl₂O₄ spinel compound on H_2 -CH₄ treated one. The results reflected that the reaction of the surface carbide with adjacent O atoms dissociated from CO₂ to CO was a fast step, which resulted in no detectable surface carbide on the H_2 -(CH₄/CO₂) treated surface. From the above results, the conclusion could be drawn that surface carbide carbons were active species for CO production, by reacting immediately with O dissociated from CO₂ after its production.

As seen in Table 1, the relative intensity of the C1s peak at ~285 eV was larger on H₂-CH₄, H₂-CH₄-CO₂ or H₂-(CH₄/CO₂) treated surfaces than that of adventitious carbon on H₂ reduced one. In order to make the reason of the increase of the relative intensity of this peak clear, TEM examinations were conducted on H₂-CH₄ and H₂-(CH₄/CO₂) treated surfaces used in XPS measurements, and whiskers were observed on both surfaces. The results implied that the carbide could be also converted to whiskers, which were contributed to the increase of the relative intensity of the C1s peak at ~285 eV.

Based on the overall results, surface carbide carbons were active species for generating CO by reacting with O atoms dissociated from CO₂ molecule, and could be converted to whiskers. Note that the metallic Co species were corresponding for dissociating CH₄, abstracting an O atom from CO₂ molecule,

and transferring O to carbide to form CO.

References and Notes

- N. R. Udengaard, J. B. Hansen, D. C. Hanson, and J. A. Stal, Oil & Gas J., 62, March 9 (1992).
- 2 J. F. Muir, R. E. Hogan, R. D. Skocypec, and R. Buck, Solar Energy, 52, 467 (1994).
- R. D. Skocypec, R. E. Hogan, and J. F. Muir, *Solar Energy*, 52, 479 (1994).
- 4 K. Seshan and J. A. Lercher, in "Carbon dioxide: Environmental issues," ed by J. Paul and C. Pradier, The Royal Soc. Chem., Cambridge (1994), p.16.
- V. A. Tsipouriari, A. M. Efstathiou, Z. L. Zhang, and V. E. Verykios, *Catal. Today*, 21, 579 (1994).
- 6 J. R. Rostrup-Nielsen and J-H. Bak Hansen, J. Catal., 144, 38 (1993).
- A. Erdöhelyi, J. Cserényi, and F. Solymosi, J. Catal., 141, 287 (1993).
- A. Erdöhelyi, J. Cserényi, E. Papp, and F. Solymosi, *Appl. Catal.*, 108, 205 (1994).
- M. C. J. Bradford and M. A. Vannice, *Appl. Catal.*, **142**, 97 (1996).
- 10 Yong Lu, Xuejia Ding, and Shikong Shen, *J. Catal.* (China), 16, 447 (1995).
- 11 A. Satos, M. Menéndez, A. Monzón, J. Santamaria, E. E. Miró, and E. A. Lombardo, J. Catal., 158, 83 (1996).
- 12 J. W. Niemantaverdriet, in "Spectroscopy in Catalysis," ed by J. W. Niemantaverdriet, Weinheim, Germany (1993), Chap. 3, p. 70.